Spatial Variability of Falling Snow
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Motivations and Objectives Event Summaries Case Study
One of the level-one requirements of the National Aeronautics and Space Event Requirements: The gauge records were accumulated for 11-, 21-, and 31-minute periods
Administration’s Global Precipitation Measurement (GPM) mission is the 1. Precipitation within 12 hours centered at the observed minute. Correlations between the paired gauge
detection of falling snow within the footprint of GPM Dual-frequency 2. Minimum precipitation total: 2.0 mm records were calculated using Pearson’s correlation coefficient and the
Precipitation Radar (DPR) and instantaneous field of view (IFOV) of GPM 3. Length of event: At least 200 samples of data spatial variability was determined using a three parameter exponential
Microwave imager (GMI) on board GPM core observatory. The DPR 4. At least 5 of the gauges reporting precipitation function where the correlation at zero distance was assumed to be 0.99.
footprint is nearly circular with a diameter of 5 km, while the IFOV of GMI Events (2017- Avg. Density | Wet Bulb Temp Storm Type The correlation at a given distance is the input for the exponential fi,
is elliptic and has a range of maximum dimension of 32 km at 10.65 GHz 2018) (g/cm?) range (°C) while the correlation distance and shape parameters are the outputs.
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